

Tetrahedron Letters 43 (2002) 2285-2288

TETRAHEDRON LETTERS

Samarium(II) iodide-mediated deoxygenative debromination of α -bromo- β -hydroxy (acetoxy) phenyl sulfones: synthesis of α , β -unsaturated sulfones

Vichai Reutrakul,* Suwatchai Jarussophon, Manat Pohmakotr, Yupa Chaiyasut, Saengvimon U-Thet and Patoomratana Tuchinda

Department of Chemistry, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok 10400, Thailand

Received 26 November 2001; revised 24 January 2002; accepted 30 January 2002

Abstract—Deoxygenative debromination of α -bromo- β -hydroxy (acetoxy) phenyl sulfones with samarium(II) iodide led to substituted α , β -unsaturated sulfones in good to excellent yields. The *E*-isomer is the major product. A possible mechanism via an α -sulfonyl radical pathway is proposed. © 2002 Elsevier Science Ltd. All rights reserved.

The reductive elimination reaction of β -oxygen substituted sulfones to olefins, known as the Julia–Lythgoe olefination, has been recognized as a very useful synthetic transformation and is commonly effected using sodium amalgam.¹ Recent modification of the reaction employing SmI₂–THF as the reducing agent has extended the scope of this reaction considerably.² As part of our continuing investigation on the utilization of the α -halomethyl phenyl sulfones as one-carbon building blocks,³ we wish to report our studies on the deoxygenative debromination of α -bromo- β -hydroxy (acetoxy) phenyl sulfones with SmI₂–THF with or without HMPA leading to substituted α,β -unsaturated sulfones in good to excellent yields.^{4,5} These results provide mechanistic insight and represent the first report⁶ on the utilization of α -halomethyl phenyl sulfones for the synthesis of α,β -unsaturated sulfones (Scheme 1).

The α -haloalkyl- β -hydroxy (acetoxy) phenyl sulfone adducts **3** were prepared, in a straightforward manner, by the reaction of the aldehydes and ketones **1** with α -haloalkyl phenyl sulfones **2** employing LDA as the base. The yields of the corresponding β -hydroxysulfone

Scheme 1.

0040-4039/02/\$ - see front matter @ 2002 Elsevier Science Ltd. All rights reserved. PII: \$0040-4039(02)00224-1

Keywords: α,β-unsaturated sulfones; samarium; deoxygenation; debromination; radical.

^{*} Corresponding author. Tel.: +66(0)2245-8332; fax: +66(0)2644-5126; e-mail: scvrt@mahidol.ac.th

derivatives 3 ($R^4 = H$) were in the range 64–84%. The corresponding β -acetoxysulfone derivatives 3 ($R^4 = Ac$) were prepared by acetylation of the hydroxy derivatives under standard conditions. In the cases where $R^3 = CH_3$ and *n*-pentyl, the β -acetoxysulfone derivatives could be prepared by in situ quenching of the incipient alkoxide adducts of compounds 1 and 2 with acetic anhydride. The yields of compound 3 ($R^4 = Ac$) were in the range 50–98%. The key deoxygenative dehalogenation reaction was carried out using 1.5 equivalents of SmI₂ in THF with or without HMPA. Initial studies to find suitable halogen substituents, were carried out with the adducts 3 (X = Cl, Br, I); ($R^1 = R^2 = -(CH_2)_2$ -; $R^3 = H$; $R^4 = Ac$). It was found that when X = Cl, the deoxygenative dechlorination was incomplete giving the corresponding vinyl sulfone in only 18% yield together with 64% recovery of the starting material. When X = Iand Br, the deoxygenative dehalogenation gave the corresponding vinyl sulfone in a comparable yield (79%). Due to the fact that the bromo derivatives **3** (X = Br) are much easier to prepare and to handle, it was decided to use the bromosulfonyl derivatives **3** (X = Br) in the subsequent investigations. The results are summarized in Table 1.⁷

The results indicated that the deoxygenative debromination of the adducts **3** ($R^4 = Ac$) gave higher yields of the α , β -unsaturated sulfones than the hydroxy deriva-

		R^3	R^2 R^1	$R^{3} \xrightarrow{\text{SO}_2\text{Ph}}_{R^2} R^1$			
	Adduct 3		R ⁴	Product 4, % yield (with HMPA)			
Entry	R^{1}, R^{2} ;	$R^3 = H$		$[E:Z \text{ ratio}]^{a}$			
	[syn : anti ratio]*	-		$R^3 = H$	$R^3 = CH_3$	$\mathbf{R}^3 = \mathbf{n} \cdot \mathbf{C}_5 \mathbf{H}_{11}$
1	-(CH ₂) ₃ -		н	\mathbb{R}^3	52(56)	77(37)	82(82)
			Ac	PhO ₂ S	79(79)	91(63)	93(89)
2	-(CH ₂) ₄ -		Н	\mathbf{R}^3	83(66)	69(45)	88(75)
			Ac	PhO ₂ S	88(79)	87(76)	_b
3	-(CH ₂)5-		н	\mathbb{R}^3	72(63)	80(74)	_b
			Ac	PhO ₂ S ²	90(86)	_ ^b	_b
4	H, (CH ₃) ₂ CH–°	[46 : 54]	н	R ³	55(46) [86:14]	60(59) [86:14]	83(77) [75:25]
		[41 : 59]	Ac	PhO ₂ S	94(85) [96:4]	92(88) [96:4]	83(62) [87:13]
5	H, <i>n</i> -C ₇ H ₁₅ -°	[35 : 65]	н	\mathbb{R}^3	64(35) [87:13]	79(73) [86:14]	87(54) [60:40]
		[36 : 64]	Ac	PhO ₂ S	82(55) [92:8]	89(53) [96:4]	92(54) [87:13]
6	$H, C_6H_5-^{\circ}$	[39:61]	н	R ³	40(44) [97:3]	53(37) [90:10]	80(62) [69:31]
		_c	Ac	PhO ₂ S Ph	_b	50(32) [98:2]	80(62) [96:4]
7	H, CH₃CH=CH−°	[30 : 70]	Н	\mathbb{R}^3	51(37) ^d	96(92) ^d	92(62) ^d
		[26:74]	Ac	PhO ₂ S	93 ^d (-) ^f	73(55) ^d	62(64) ^d
8	H, (CH ₃) ₂ C=CH(CH ₂) ₂ C(CH ₃)=C	[48 : 59] H–°	н	\mathbb{R}^3	40(29) [90:10]	45(47) [82:18]	40(45) [57:43]
		[48 : 59]	Ac	PhO_2S \checkmark \checkmark \checkmark	98(32) [93:7]	83(67) [95:5]	80(64) [93:7]

Table 1. Deoxygenative debromination of 3 with 1.5 equiv. SmI₂/THF/0°C/20 min with and without HMPA

^a The ratios were determined by ¹H-NMR (300 MHz). In the cases of product 4, the *E*:*Z* ratio given was from the reaction without the addition of HMPA. The presence of HMPA gave the comparable *E*:*Z* ratio.

^b The adduct 3 could not be prepared.

^c Attempted acetylation of these compounds gave the eliminated product.

^d The product was unstable and did not permit the full characterization. The TLC of the product showed a single spot and ¹H-NMR data agreed with the assigned structure.

^e The adduct 3 used is a mixture of diastereomers.

^f The reaction gave a complex mixture and no product 4 could be isolated.

Scheme 2.

The deoxygenative debromination of the diastereomers syn-5 (J=1.6 Hz) and the *anti-6* (J=7.6 Hz) and the pair of diastereomers of **8** (isomers **8a** and **8b**) gave insight into the mechanism of the reaction.⁸

The reactions of *syn*-5 and *anti*-6 with SmI₂-THF gave the vinyl sulfone 7 (entry 4, $R^3 = H$) in 88% (*E*:*Z*=94:6) and 96% (*E*:*Z*=96:4) yields, respectively, with high *E*-selectivity. The deoxygenative debromination of isomers **8a** and **8b** under the same conditions gave the corresponding α,β -unsaturated sulfone 9 in 87% (*E*:*Z*= 87:13) and 84% (*E*:*Z*=82:18) yields, respectively. With the currently accepted radical mechanism for the dehalogenation by SmI₂⁹ and in view of the fact that only a slight excess of SmI₂ was used in the reaction, a radical mechanistic pathway can be proposed as shown in Scheme 2. The proposed radical intermediate **10** undergoes free radical elimination to give the thermodynamically more stable product.

In summary, our studies have provided preliminary mechanistic insight and illustrated the synthetic potential of the samarium-mediated deoxygenative debromination for the synthesis of α , β -unsaturated sulfones and particularly sulfonyl substituted 1,3-dienes.^{4d} Further investigation into the scope of the reaction is in progress.

Acknowledgements

We wish to thank the Thailand Research Fund for the award of the Senior Research Scholar to V.R. and a Ph.D. scholarship to S.J. through the Royal Golden Jubilee Ph.D. program. The partial supports by the Development and Promotion of Science and Technology Talents Project and the Higher Education Development Project: Postgraduate Education and Research Program in Chemistry are also gratefully acknowledged.

References

 (a) Julia, M.; Paris, J.-M. Tetrahedron Lett. 1973, 14, 4833–4836; (b) Kocienski, P. J.; Lythgoe, B.; Ruston, S. J. Chem. Soc., Perkin Trans. 1 1978, 829–834; (c) Kocienski, P. In Comprehensive Organic Synthesis; Trost, B. M.; Fleming, I., Eds.; Pergamon Press: Oxford, 1991; Vol. 6, pp. 975–1010; (d) Kocienski, P. J.; Bell, A.; Blakemore, P. R. Synlett 2000, 365–366 and references cited therein; (e) for a sulfoxide version of the Julia–Lythgoe olefination, see: Satoh, T.; Hanaki, N.; Yamada, N.; Asano, T. Tetrahedron 2000, 56, 6223–6234.

- (a) Kende, A. S.; Mendoza, J. S. *Tetrahedron Lett.* **1990**, *31*, 7105–7108; (b) DePouilly, P.; Chénedé, A.; Mallet, J.-M.; Sinaÿ, P. *Tetrahedron Lett.* **1992**, *33*, 8065–8068; (c) Ihara, M.; Suzuki, S.; Taniguchi, T.; Tokunaga, Y.; Fukumoto, K. *Synlett* **1994**, 859–860; (d) Keck, G. E.; Savin, K. A.; Weglarz, M. A. *J. Org. Chem.* **1995**, *60*, 3194–3204; (e) Markó, I. E.; Murphy, F.; Kumps, L.; Ates, A.; Touillaux, R.; Craig, D.; Carballares, S.; Dolan, S. *Tetrahedron* **2001**, *57*, 2609–2619 and references cited therein.
- 3. Taken in part from M.Sc. Theses by Y.C. and S.U.-T., Mahidol University, 1996 and 1997, respectively.
- 4. For selected reviews and references on the chemistry of α,β-unsaturated sulfones, see: (a) DeLucchi, O.; Pasquato, L. *Tetrahedron* 1988, 44, 6755–6794; (b) Simpkins, N. S. *Tetrahedron* 1990, 46, 6951–6984; Simpkins, N. S. *Sulfones in Organic Synthesis*; Pergamon Press: Oxford, 1993; (c) Cossu, S.; DeLucchi, O.; Durr, R.; Fabris, F. *Synth. Commun.* 1996, 26, 211–216 and references cited therein; (d) Bäckvall, J.-E.; Chinchilla, R.; Nájera, C.; Yus, M. *Chem. Rev.* 1998, 98, 2291–2312; (e) Nájera, C.; Yus, M. *Tetrahedron* 1999, 55, 10547–10658; (f) Duan, D.-H.; Huang, X. *Synlett* 1999, 317–318; (g) Orita, A.; Yoshioka, N.; Struwe, P.; Braier, A.; Beckmann, A.; Otera, J. *Chem. Eur. J.* 1999, 5, 1355–1363; (h) Lee, J. W.; Lee, C.-W.; Jung, J. H.; Oh, D. Y. *Synth. Commun.* 2000, 30, 279–283

and 2897–2902; (i) Mauleón, P.; Alonso, I.; Carretero, J. C. Angew. Chem., Int. Ed. **2001**, 40, 1291–1293.

- For the synthetic utilization of α-halomethyl phenyl sulfones, see: (a) Reutrakul, V.; Pohmakotr, M. In *Encyclopedia of Reagents for Organic Synthesis*; Paquette, L. A., Ed.; John Wiley: New York, 1995; Vol. 2, pp. 1165–1168; (b) Giardinà, A.; Giovannini, R.; Petrini, M. *Tetrahedron Lett.* 1997, 38, 1995–1998; (c) Yoshimatsu, M.; Ohara, M. *Tetrahedron Lett.* 1997, 38, 5651–5654.
- The only publication in this area is the recent report on the use of *gem*-dibromomethyl aryl sulfones with Sm/SmI₂/CrCl₃ (cat.) system for the synthesis of alkylidene sulfones, see: Liu, Y.; Wu, H.; Zhang, Y. *Synth. Commun.* 2001, *31*, 47–52.
- 7. All compounds were characterized by spectral data and elemental analyses or HRMS except those reported in entry 7, Table 1 (see footnote d).
- 8. These diastereomers were separated by preparative TLC on silica gel.
- For reviews on SmI₂, see: (a) Molander, G. A. In Organic Reactions; Paquette, L. A., Ed.; John Wiley: New York, 1994; Vol. 46, pp. 211–367; (b) Molander, G. A.; Alonse-Alija, C. Tetrahedron 1997, 53, 8067–8084 and references cited therein.