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Abstract—Deoxygenative debromination of �-bromo-�-hydroxy (acetoxy) phenyl sulfones with samarium(II) iodide led to
substituted �,�-unsaturated sulfones in good to excellent yields. The E-isomer is the major product. A possible mechanism via an
�-sulfonyl radical pathway is proposed. © 2002 Elsevier Science Ltd. All rights reserved.

The reductive elimination reaction of �-oxygen substi-
tuted sulfones to olefins, known as the Julia–Lythgoe
olefination, has been recognized as a very useful syn-
thetic transformation and is commonly effected using
sodium amalgam.1 Recent modification of the reaction
employing SmI2–THF as the reducing agent has
extended the scope of this reaction considerably.2 As
part of our continuing investigation on the utilization
of the �-halomethyl phenyl sulfones as one-carbon
building blocks,3 we wish to report our studies on the
deoxygenative debromination of �-bromo-�-hydroxy
(acetoxy) phenyl sulfones with SmI2–THF with or with-

out HMPA leading to substituted �,�-unsaturated sul-
fones in good to excellent yields.4,5 These results
provide mechanistic insight and represent the first
report6 on the utilization of �-halomethyl phenyl sul-
fones for the synthesis of �,�-unsaturated sulfones
(Scheme 1).

The �-haloalkyl-�-hydroxy (acetoxy) phenyl sulfone
adducts 3 were prepared, in a straightforward manner,
by the reaction of the aldehydes and ketones 1 with
�-haloalkyl phenyl sulfones 2 employing LDA as the
base. The yields of the corresponding �-hydroxysulfone

Scheme 1.
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derivatives 3 (R4=H) were in the range 64–84%. The
corresponding �-acetoxysulfone derivatives 3 (R4=Ac)
were prepared by acetylation of the hydroxy derivatives
under standard conditions. In the cases where R3=CH3

and n-pentyl, the �-acetoxysulfone derivatives could be
prepared by in situ quenching of the incipient alkoxide
adducts of compounds 1 and 2 with acetic anhydride.
The yields of compound 3 (R4=Ac) were in the range
50–98%. The key deoxygenative dehalogenation reac-
tion was carried out using 1.5 equivalents of SmI2 in
THF with or without HMPA. Initial studies to find
suitable halogen substituents, were carried out with the
adducts 3 (X=Cl, Br, I); (R1=R2=-(CH2)2-; R3=H;
R4=Ac). It was found that when X=Cl, the deoxy-

genative dechlorination was incomplete giving the cor-
responding vinyl sulfone in only 18% yield together
with 64% recovery of the starting material. When X=I
and Br, the deoxygenative dehalogenation gave the
corresponding vinyl sulfone in a comparable yield
(79%). Due to the fact that the bromo derivatives 3
(X=Br) are much easier to prepare and to handle, it
was decided to use the bromosulfonyl derivatives 3
(X=Br) in the subsequent investigations. The results
are summarized in Table 1.7

The results indicated that the deoxygenative debromi-
nation of the adducts 3 (R4=Ac) gave higher yields of
the �,�-unsaturated sulfones than the hydroxy deriva-

Table 1. Deoxygenative debromination of 3 with 1.5 equiv. SmI2/THF/0°C/20 min with and without HMPA
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Scheme 2.

tives R4=H; except in entry 7. The addition of HMPA
led to the lowering of the yields of products 4. For the
aldehyde entries 4, 5, 6 and 8, the product vinyl sul-
fones 4, R3=H and CH3 showed high E-selectivity.
When R3=n-C5H11, the product �,�-unsaturated sul-
fones 4 exhibit moderate to high E-selectivity.

The deoxygenative debromination of the diastereomers
syn-5 (J=1.6 Hz) and the anti-6 (J=7.6 Hz) and the
pair of diastereomers of 8 (isomers 8a and 8b) gave
insight into the mechanism of the reaction.8

The reactions of syn-5 and anti-6 with SmI2–THF gave
the vinyl sulfone 7 (entry 4, R3=H) in 88% (E :Z=94:6)
and 96% (E :Z=96:4) yields, respectively, with high
E-selectivity. The deoxygenative debromination of iso-
mers 8a and 8b under the same conditions gave the
corresponding �,�-unsaturated sulfone 9 in 87% (E :Z=
87:13) and 84% (E :Z=82:18) yields, respectively. With
the currently accepted radical mechanism for the
dehalogenation by SmI2

9 and in view of the fact that
only a slight excess of SmI2 was used in the reaction, a
radical mechanistic pathway can be proposed as shown
in Scheme 2. The proposed radical intermediate 10
undergoes free radical elimination to give the thermo-
dynamically more stable product.

In summary, our studies have provided preliminary
mechanistic insight and illustrated the synthetic potential
of the samarium-mediated deoxygenative debromination

for the synthesis of �,�-unsaturated sulfones and partic-
ularly sulfonyl substituted 1,3-dienes.4d Further investi-
gation into the scope of the reaction is in progress.
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(d) Bäckvall, J.-E.; Chinchilla, R.; Nájera, C.; Yus, M.
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(b) Giardinà, A.; Giovannini, R.; Petrini, M. Tetrahedron
Lett. 1997, 38, 1995–1998; (c) Yoshimatsu, M.; Ohara, M.
Tetrahedron Lett. 1997, 38, 5651–5654.

6. The only publication in this area is the recent report on the
use of gem-dibromomethyl aryl sulfones with Sm/SmI2/
CrCl3 (cat.) system for the synthesis of alkylidene sulfones,
see: Liu, Y.; Wu, H.; Zhang, Y. Synth. Commun. 2001, 31,
47–52.

7. All compounds were characterized by spectral data and
elemental analyses or HRMS except those reported in
entry 7, Table 1 (see footnote d).

8. These diastereomers were separated by preparative TLC
on silica gel.

9. For reviews on SmI2, see: (a) Molander, G. A. In Organic
Reactions ; Paquette, L. A., Ed.; John Wiley: New York,
1994; Vol. 46, pp. 211–367; (b) Molander, G. A.; Alonse-
Alija, C. Tetrahedron 1997, 53, 8067–8084 and references
cited therein.


	Samarium(II) iodide-mediated deoxygenative debromination of alpha-bromo-beta-hydroxy (acetoxy) phenyl sulfones...
	Acknowledgements
	References


